.. _sec_kaggle_cifar10: Image Classification (CIFAR-10) on Kaggle ========================================= So far, we have been using high-level APIs of deep learning frameworks to directly obtain image datasets in tensor format. However, custom image datasets often come in the form of image files. In this section, we will start from raw image files, and organize, read, then transform them into tensor format step by step. We experimented with the CIFAR-10 dataset in :numref:`sec_image_augmentation`, which is an important dataset in computer vision. In this section, we will apply the knowledge we learned in previous sections to practice the Kaggle competition of CIFAR-10 image classification. The web address of the competition is https://www.kaggle.com/c/cifar-10 :numref:`fig_kaggle_cifar10` shows the information on the competition’s webpage. In order to submit the results, you need to register a Kaggle account. .. _fig_kaggle_cifar10: .. figure:: ../img/kaggle-cifar10.png :width: 600px CIFAR-10 image classification competition webpage information. The competition dataset can be obtained by clicking the “Data” tab. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import collections import math import os import shutil import pandas as pd import torch import torchvision from torch import nn from d2l import torch as d2l .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import collections import math import os import shutil import pandas as pd from mxnet import gluon, init, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() .. raw:: html
.. raw:: html
Obtaining and Organizing the Dataset ------------------------------------ The competition dataset is divided into a training set and a test set, which contain 50000 and 300000 images, respectively. In the test set, 10000 images will be used for evaluation, while the remaining 290000 images will not be evaluated: they are included just to make it hard to cheat with *manually* labeled results of the test set. The images in this dataset are all png color (RGB channels) image files, whose height and width are both 32 pixels. The images cover a total of 10 categories, namely airplanes, cars, birds, cats, deer, dogs, frogs, horses, boats, and trucks. The upper-left corner of :numref:`fig_kaggle_cifar10` shows some images of airplanes, cars, and birds in the dataset. Downloading the Dataset ~~~~~~~~~~~~~~~~~~~~~~~ After logging in to Kaggle, we can click the “Data” tab on the CIFAR-10 image classification competition webpage shown in :numref:`fig_kaggle_cifar10` and download the dataset by clicking the “Download All” button. After unzipping the downloaded file in ``../data``, and unzipping ``train.7z`` and ``test.7z`` inside it, you will find the entire dataset in the following paths: - ``../data/cifar-10/train/[1-50000].png`` - ``../data/cifar-10/test/[1-300000].png`` - ``../data/cifar-10/trainLabels.csv`` - ``../data/cifar-10/sampleSubmission.csv`` where the ``train`` and ``test`` directories contain the training and testing images, respectively, ``trainLabels.csv`` provides labels for the training images, and ``sample_submission.csv`` is a sample submission file. To make it easier to get started, we provide a small-scale sample of the dataset that contains the first 1000 training images and 5 random testing images. To use the full dataset of the Kaggle competition, you need to set the following ``demo`` variable to ``False``. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip', '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd') # If you use the full dataset downloaded for the Kaggle competition, set # `demo` to False demo = True if demo: data_dir = d2l.download_extract('cifar10_tiny') else: data_dir = '../data/cifar-10/' .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Downloading ../data/kaggle_cifar10_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/kaggle_cifar10_tiny.zip... .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip', '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd') # If you use the full dataset downloaded for the Kaggle competition, set # `demo` to False demo = True if demo: data_dir = d2l.download_extract('cifar10_tiny') else: data_dir = '../data/cifar-10/' .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Downloading ../data/kaggle_cifar10_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/kaggle_cifar10_tiny.zip... .. raw:: html
.. raw:: html
Organizing the Dataset ~~~~~~~~~~~~~~~~~~~~~~ We need to organize datasets to facilitate model training and testing. Let’s first read the labels from the csv file. The following function returns a dictionary that maps the non-extension part of the filename to its label. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def read_csv_labels(fname): """Read `fname` to return a filename to label dictionary.""" with open(fname, 'r') as f: # Skip the file header line (column name) lines = f.readlines()[1:] tokens = [l.rstrip().split(',') for l in lines] return dict(((name, label) for name, label in tokens)) labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv')) print('# training examples:', len(labels)) print('# classes:', len(set(labels.values()))) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # training examples: 1000 # classes: 10 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def read_csv_labels(fname): """Read `fname` to return a filename to label dictionary.""" with open(fname, 'r') as f: # Skip the file header line (column name) lines = f.readlines()[1:] tokens = [l.rstrip().split(',') for l in lines] return dict(((name, label) for name, label in tokens)) labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv')) print('# training examples:', len(labels)) print('# classes:', len(set(labels.values()))) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output # training examples: 1000 # classes: 10 .. raw:: html
.. raw:: html
Next, we define the ``reorg_train_valid`` function to split the validation set out of the original training set. The argument ``valid_ratio`` in this function is the ratio of the number of examples in the validation set to the number of examples in the original training set. More concretely, let :math:`n` be the number of images of the class with the least examples, and :math:`r` be the ratio. The validation set will split out :math:`\max(\lfloor nr\rfloor,1)` images for each class. Let’s use ``valid_ratio=0.1`` as an example. Since the original training set has 50000 images, there will be 45000 images used for training in the path ``train_valid_test/train``, while the other 5000 images will be split out as validation set in the path ``train_valid_test/valid``. After organizing the dataset, images of the same class will be placed under the same folder. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def copyfile(filename, target_dir): """Copy a file into a target directory.""" os.makedirs(target_dir, exist_ok=True) shutil.copy(filename, target_dir) #@save def reorg_train_valid(data_dir, labels, valid_ratio): """Split the validation set out of the original training set.""" # The number of examples of the class that has the fewest examples in the # training dataset n = collections.Counter(labels.values()).most_common()[-1][1] # The number of examples per class for the validation set n_valid_per_label = max(1, math.floor(n * valid_ratio)) label_count = {} for train_file in os.listdir(os.path.join(data_dir, 'train')): label = labels[train_file.split('.')[0]] fname = os.path.join(data_dir, 'train', train_file) copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train_valid', label)) if label not in label_count or label_count[label] < n_valid_per_label: copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'valid', label)) label_count[label] = label_count.get(label, 0) + 1 else: copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train', label)) return n_valid_per_label .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def copyfile(filename, target_dir): """Copy a file into a target directory.""" os.makedirs(target_dir, exist_ok=True) shutil.copy(filename, target_dir) #@save def reorg_train_valid(data_dir, labels, valid_ratio): """Split the validation set out of the original training set.""" # The number of examples of the class that has the fewest examples in the # training dataset n = collections.Counter(labels.values()).most_common()[-1][1] # The number of examples per class for the validation set n_valid_per_label = max(1, math.floor(n * valid_ratio)) label_count = {} for train_file in os.listdir(os.path.join(data_dir, 'train')): label = labels[train_file.split('.')[0]] fname = os.path.join(data_dir, 'train', train_file) copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train_valid', label)) if label not in label_count or label_count[label] < n_valid_per_label: copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'valid', label)) label_count[label] = label_count.get(label, 0) + 1 else: copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train', label)) return n_valid_per_label .. raw:: html
.. raw:: html
The ``reorg_test`` function below organizes the testing set for data loading during prediction. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def reorg_test(data_dir): """Organize the testing set for data loading during prediction.""" for test_file in os.listdir(os.path.join(data_dir, 'test')): copyfile(os.path.join(data_dir, 'test', test_file), os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def reorg_test(data_dir): """Organize the testing set for data loading during prediction.""" for test_file in os.listdir(os.path.join(data_dir, 'test')): copyfile(os.path.join(data_dir, 'test', test_file), os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')) .. raw:: html
.. raw:: html
Finally, we use a function to invoke the ``read_csv_labels``, ``reorg_train_valid``, and ``reorg_test`` functions defined above. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def reorg_cifar10_data(data_dir, valid_ratio): labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv')) reorg_train_valid(data_dir, labels, valid_ratio) reorg_test(data_dir) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def reorg_cifar10_data(data_dir, valid_ratio): labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv')) reorg_train_valid(data_dir, labels, valid_ratio) reorg_test(data_dir) .. raw:: html
.. raw:: html
Here we only set the batch size to 32 for the small-scale sample of the dataset. When training and testing the complete dataset of the Kaggle competition, ``batch_size`` should be set to a larger integer, such as 128. We split out 10% of the training examples as the validation set for tuning hyperparameters. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size = 32 if demo else 128 valid_ratio = 0.1 reorg_cifar10_data(data_dir, valid_ratio) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size = 32 if demo else 128 valid_ratio = 0.1 reorg_cifar10_data(data_dir, valid_ratio) .. raw:: html
.. raw:: html
Image Augmentation ------------------ We use image augmentation to address overfitting. For example, images can be flipped horizontally at random during training. We can also perform standardization for the three RGB channels of color images. Below lists some of these operations that you can tweak. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python transform_train = torchvision.transforms.Compose([ # Scale the image up to a square of 40 pixels in both height and width torchvision.transforms.Resize(40), # Randomly crop a square image of 40 pixels in both height and width to # produce a small square of 0.64 to 1 times the area of the original # image, and then scale it to a square of 32 pixels in both height and # width torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), # Standardize each channel of the image torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python transform_train = gluon.data.vision.transforms.Compose([ # Scale the image up to a square of 40 pixels in both height and width gluon.data.vision.transforms.Resize(40), # Randomly crop a square image of 40 pixels in both height and width to # produce a small square of 0.64 to 1 times the area of the original # image, and then scale it to a square of 32 pixels in both height and # width gluon.data.vision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)), gluon.data.vision.transforms.RandomFlipLeftRight(), gluon.data.vision.transforms.ToTensor(), # Standardize each channel of the image gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) .. raw:: html
.. raw:: html
During testing, we only perform standardization on images so as to remove randomness in the evaluation results. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python transform_test = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python transform_test = gluon.data.vision.transforms.Compose([ gluon.data.vision.transforms.ToTensor(), gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) .. raw:: html
.. raw:: html
Reading the Dataset ------------------- Next, we read the organized dataset consisting of raw image files. Each example includes an image and a label. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python train_ds, train_valid_ds = [torchvision.datasets.ImageFolder( os.path.join(data_dir, 'train_valid_test', folder), transform=transform_train) for folder in ['train', 'train_valid']] valid_ds, test_ds = [torchvision.datasets.ImageFolder( os.path.join(data_dir, 'train_valid_test', folder), transform=transform_test) for folder in ['valid', 'test']] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python train_ds, valid_ds, train_valid_ds, test_ds = [ gluon.data.vision.ImageFolderDataset( os.path.join(data_dir, 'train_valid_test', folder)) for folder in ['train', 'valid', 'train_valid', 'test']] .. raw:: html
.. raw:: html
During training, we need to specify all the image augmentation operations defined above. When the validation set is used for model evaluation during hyperparameter tuning, no randomness from image augmentation should be introduced. Before final prediction, we train the model on the combined training set and validation set to make full use of all the labeled data. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python train_iter, train_valid_iter = [torch.utils.data.DataLoader( dataset, batch_size, shuffle=True, drop_last=True) for dataset in (train_ds, train_valid_ds)] valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False, drop_last=True) test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False, drop_last=False) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python train_iter, train_valid_iter = [gluon.data.DataLoader( dataset.transform_first(transform_train), batch_size, shuffle=True, last_batch='discard') for dataset in (train_ds, train_valid_ds)] valid_iter = gluon.data.DataLoader( valid_ds.transform_first(transform_test), batch_size, shuffle=False, last_batch='discard') test_iter = gluon.data.DataLoader( test_ds.transform_first(transform_test), batch_size, shuffle=False, last_batch='keep') .. raw:: html
.. raw:: html
Defining the Model ------------------ .. raw:: html
pytorchmxnet
.. raw:: html
We define the ResNet-18 model described in :numref:`sec_resnet`. .. raw:: latex \diilbookstyleinputcell .. code:: python def get_net(): num_classes = 10 net = d2l.resnet18(num_classes, 3) return net loss = nn.CrossEntropyLoss(reduction="none") .. raw:: html
.. raw:: html
Here, we build the residual blocks based on the ``HybridBlock`` class, which is slightly different from the implementation described in :numref:`sec_resnet`. This is for improving computational efficiency. .. raw:: latex \diilbookstyleinputcell .. code:: python class Residual(nn.HybridBlock): def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs): super(Residual, self).__init__(**kwargs) self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1, strides=strides) self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2D(num_channels, kernel_size=1, strides=strides) else: self.conv3 = None self.bn1 = nn.BatchNorm() self.bn2 = nn.BatchNorm() def hybrid_forward(self, F, X): Y = F.npx.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) return F.npx.relu(Y + X) Next, we define the ResNet-18 model. .. raw:: latex \diilbookstyleinputcell .. code:: python def resnet18(num_classes): net = nn.HybridSequential() net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1), nn.BatchNorm(), nn.Activation('relu')) def resnet_block(num_channels, num_residuals, first_block=False): blk = nn.HybridSequential() for i in range(num_residuals): if i == 0 and not first_block: blk.add(Residual(num_channels, use_1x1conv=True, strides=2)) else: blk.add(Residual(num_channels)) return blk net.add(resnet_block(64, 2, first_block=True), resnet_block(128, 2), resnet_block(256, 2), resnet_block(512, 2)) net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes)) return net We use Xavier initialization described in :numref:`subsec_xavier` before training begins. .. raw:: latex \diilbookstyleinputcell .. code:: python def get_net(devices): num_classes = 10 net = resnet18(num_classes) net.initialize(ctx=devices, init=init.Xavier()) return net loss = gluon.loss.SoftmaxCrossEntropyLoss() .. raw:: html
.. raw:: html
Defining the Training Function ------------------------------ We will select models and tune hyperparameters according to the model’s performance on the validation set. In the following, we define the model training function ``train``. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay): trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=wd) scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay) num_batches, timer = len(train_iter), d2l.Timer() legend = ['train loss', 'train acc'] if valid_iter is not None: legend.append('valid acc') animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend) net = nn.DataParallel(net, device_ids=devices).to(devices[0]) for epoch in range(num_epochs): net.train() metric = d2l.Accumulator(3) for i, (features, labels) in enumerate(train_iter): timer.start() l, acc = d2l.train_batch_ch13(net, features, labels, loss, trainer, devices) metric.add(l, acc, labels.shape[0]) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[2], metric[1] / metric[2], None)) if valid_iter is not None: valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter) animator.add(epoch + 1, (None, None, valid_acc)) scheduler.step() measures = (f'train loss {metric[0] / metric[2]:.3f}, ' f'train acc {metric[1] / metric[2]:.3f}') if valid_iter is not None: measures += f', valid acc {valid_acc:.3f}' print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}' f' examples/sec on {str(devices)}') .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay): trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'momentum': 0.9, 'wd': wd}) num_batches, timer = len(train_iter), d2l.Timer() legend = ['train loss', 'train acc'] if valid_iter is not None: legend.append('valid acc') animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend) for epoch in range(num_epochs): metric = d2l.Accumulator(3) if epoch > 0 and epoch % lr_period == 0: trainer.set_learning_rate(trainer.learning_rate * lr_decay) for i, (features, labels) in enumerate(train_iter): timer.start() l, acc = d2l.train_batch_ch13( net, features, labels.astype('float32'), loss, trainer, devices, d2l.split_batch) metric.add(l, acc, labels.shape[0]) timer.stop() if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[2], metric[1] / metric[2], None)) if valid_iter is not None: valid_acc = d2l.evaluate_accuracy_gpus(net, valid_iter, d2l.split_batch) animator.add(epoch + 1, (None, None, valid_acc)) measures = (f'train loss {metric[0] / metric[2]:.3f}, ' f'train acc {metric[1] / metric[2]:.3f}') if valid_iter is not None: measures += f', valid acc {valid_acc:.3f}' print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}' f' examples/sec on {str(devices)}') .. raw:: html
.. raw:: html
Training and Validating the Model --------------------------------- Now, we can train and validate the model. All the following hyperparameters can be tuned. For example, we can increase the number of epochs. When ``lr_period`` and ``lr_decay`` are set to 4 and 0.9, respectively, the learning rate of the optimization algorithm will be multiplied by 0.9 after every 4 epochs. Just for ease of demonstration, we only train 20 epochs here. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4 lr_period, lr_decay, net = 4, 0.9, get_net() net(next(iter(train_iter))[0]) train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output train loss 0.654, train acc 0.789, valid acc 0.438 958.1 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)] .. figure:: output_kaggle-cifar10_42a34e_126_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 0.02, 5e-4 lr_period, lr_decay, net = 4, 0.9, get_net(devices) net.hybridize() train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output train loss 0.807, train acc 0.723, valid acc 0.422 486.9 examples/sec on [gpu(0), gpu(1)] .. figure:: output_kaggle-cifar10_42a34e_129_1.svg .. raw:: html
.. raw:: html
Classifying the Testing Set and Submitting Results on Kaggle ------------------------------------------------------------ After obtaining a promising model with hyperparameters, we use all the labeled data (including the validation set) to retrain the model and classify the testing set. .. raw:: html
pytorchmxnet
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net, preds = get_net(), [] net(next(iter(train_valid_iter))[0]) train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period, lr_decay) for X, _ in test_iter: y_hat = net(X.to(devices[0])) preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy()) sorted_ids = list(range(1, len(test_ds) + 1)) sorted_ids.sort(key=lambda x: str(x)) df = pd.DataFrame({'id': sorted_ids, 'label': preds}) df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x]) df.to_csv('submission.csv', index=False) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output train loss 0.608, train acc 0.786 1040.8 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)] .. figure:: output_kaggle-cifar10_42a34e_135_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net, preds = get_net(devices), [] net.hybridize() train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period, lr_decay) for X, _ in test_iter: y_hat = net(X.as_in_ctx(devices[0])) preds.extend(y_hat.argmax(axis=1).astype(int).asnumpy()) sorted_ids = list(range(1, len(test_ds) + 1)) sorted_ids.sort(key=lambda x: str(x)) df = pd.DataFrame({'id': sorted_ids, 'label': preds}) df['label'] = df['label'].apply(lambda x: train_valid_ds.synsets[x]) df.to_csv('submission.csv', index=False) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output train loss 1.053, train acc 0.616 1148.8 examples/sec on [gpu(0), gpu(1)] .. figure:: output_kaggle-cifar10_42a34e_138_1.svg .. raw:: html
.. raw:: html
The above code will generate a ``submission.csv`` file, whose format meets the requirement of the Kaggle competition. The method for submitting results to Kaggle is similar to that in :numref:`sec_kaggle_house`. Summary ------- - We can read datasets containing raw image files after organizing them into the required format. .. raw:: html
pytorchmxnet
.. raw:: html
- We can use convolutional neural networks and image augmentation in an image classification competition. .. raw:: html
.. raw:: html
- We can use convolutional neural networks, image augmentation, and hybrid programing in an image classification competition. .. raw:: html
.. raw:: html
Exercises --------- 1. Use the complete CIFAR-10 dataset for this Kaggle competition. Set hyperparameters as ``batch_size = 128``, ``num_epochs = 100``, ``lr = 0.1``, ``lr_period = 50``, and ``lr_decay = 0.1``. See what accuracy and ranking you can achieve in this competition. Can you further improve them? 2. What accuracy can you get when not using image augmentation? .. raw:: html
pytorchmxnet
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html